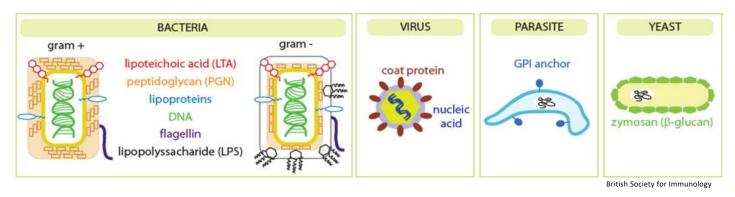
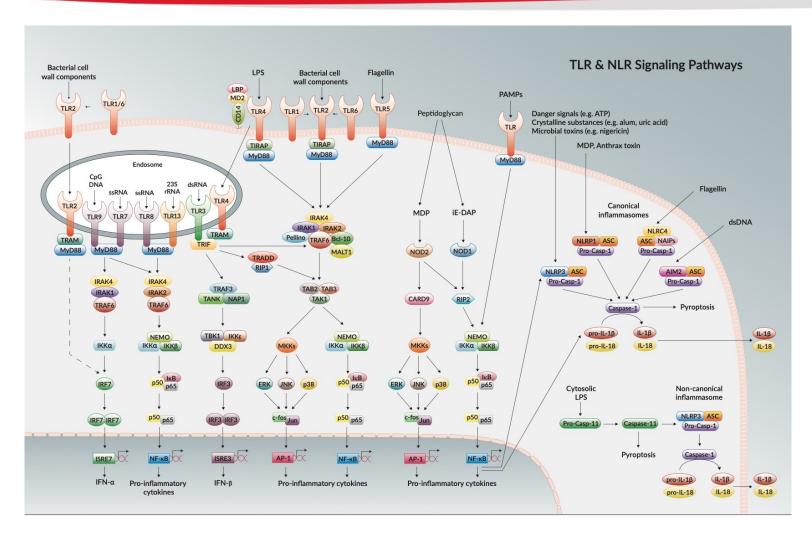

Immune Reporter Cell Lines -


Developing bioassays for reliable compounds

Pathogens Associated Molecular Patterns (PAMPs)

Innate immunity: Quick, general, non-specific



Innate immunity: Recognize "non-self" molecules known as PAMPs

PAMPs: structures found on pathogens

Pattern Recognition Receptors (PRRs)

PRRs: Receptors predominantly expressed in immune cells for PAMPs recognition Can be on the cell surface, in the cytosol or in compartments like endosomes

Immunomodulators in Clinical Trial

PRR ligands as new therapeutic approach:

Agonist – adjuvants Antagonist – treatment for autoimmune diseases

Target	Compound	Application	Status
TLR7	Imiquimod	HBV vaccine	11, 111
TLR9	CpG1018	HIV-1 vaccine	1
Inflammasome	Inzomelid	Cryopyrin-Associated Periodic Syndrome	I
TLR3	PolyICLC	Glioblastoma	II
STING	ADU-S100	Solid tumors	I
TLR7/8	R848	Brain tumors	II

Immunity. 2020 Jul 14;53(1):78-97. doi: 10.1016/j.immuni.2020.04.004.

Nucleic Acid Sensors as Therapeutic Targets

Immunity

Review

Nucleic Acid Sensors as Therapeutic Targets for Human Disease

Sarah M. McWhirter^{1,*} and Caroline A. Jefferies²

¹Aduro Biotech, Inc., Berkeley, CA 94710, USA

²Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA

*Correspondence: smcwhirter@aduro.com

https://doi.org/10.1016/j.immuni.2020.04.004

Table 1. (Table 1. Ongoing Clinical Trials Targeting Nucleic Sensor Agonists for Infectious Disease					
Target	Drug Name	Developer	Disease	Phase	Combination Agent	Trial ID
TLR7	imiquimod (Aldara)	3M Pharmaceuticals	HBV	11/111	HBV vaccine	NCT04083157
			influenza	III	influenza vaccine	NCT04143451
TLR7	RO7020531 (RG7854)	Hoffmann-La Roche	HBV	1	none	NCT02956850
TLR7	TQ-A3334 (AL-034)	Janssen	HBV	II	RT inhibitor	NCT04180150
TLR7	GS-9620 (vesatolimod)	Gilead	HIV	1	ART	NCT03060447
TLR7/8	3M-052-AF	3M, IDRI	HIV	1	HIV-1 vaccine	NCT04177355
TLR8	GS-9688 (selgantolimod)	Gilead	HBV	II	oral antiviral agents	NCT03491553
			HBV	II	RT inhibitor	NCT03615066
TLR9	MGN1703 (lefitolimod)	Mologen AG	HIV	II	bNab	NCT03837756
TLR9	CpG 1018	Dynavax Technologies	HIV	1	HIV-1 vaccine	NCT04177355
RIG-I	SB-9200 (inarigivir	Spring Bank	HBV	II	RT inhibitor	NCT04023721
	soproxil)	Pharmaceuticals	HBV	II	none	NCT03932513
			HBV	II	RT inhibitor	NCT04059198
			HBV	II	RT inhibitor	NCT03434353

Source: ClinicalTrials.gov.

ART, antiretroviral therapy; bNab, broadly neutralizing antibody; HBV, hepatitis B virus; HIV, human immunodeficiency virus; RT, reverse transcriptase.

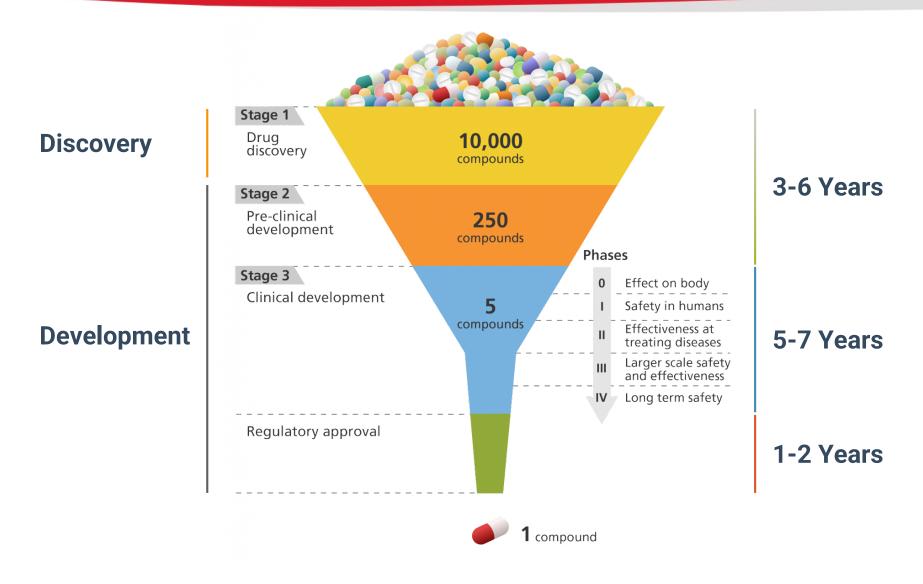
			cleic Sensor Agonists fo				
Target	Drug Name	Developer	Disease	Phas	seROA	Combination Agent	Trial ID
TLR3	poly-ICLC	Oncovir	B cell lymphoma	I/II	IT	RT, Flt3 ligand	NCT01976585
Mda5	(Hiltonol)		B cell lymphoma	I/II	IT	RT, Flt3 ligand and pembrolizumab	NCT03789097
			solid tumors	Ш	IT/i.m.	anti-PD1/L1	NCT02423863
			prostate cancer	1	IT/i.m.	n/a	NCT03262103
			prostate cancer	-1	i.m.	SBRT, Flt3 ligand, anti-PD1	NCT03835533
			colorectal cancer	1/11	i.m.	anti-PD1	NCT02834052
			solid tumors	1/11	i.m.	anti-PD1/L1	NCT03721679
			solid tumors	1/11	IT/i.m.	anti-PD1 and anti-CTLA4	NCT02643303
			ovarian cancer	1/11	s.c.	CDX-1401 ^a , IDO1 inhibitor	NCT02166905
			MDS or AML	T	s.c.	CDX-1401 ^a , nivolumab, decitabine	NCT03358719
			melanoma	Ш	s.c.	CDX-1401 ^a , Flt3 ligand	NCT02129075
			lung cancer	1/11	unk	MUC1 peptide vaccine	NCT01720836
			solid tumors	I/II	s.c.	personal peptide vaccine, anti-PD1	NCT03633110
			breast cancer	1	unk	peptide vaccine, anti-PD1	NCT03362060
			multiple myeloma	T	i.m.	peptide vaccine, citarinostat, lenalidomide	NCT02886065
			lymphoma	1	unk	personal peptide vaccine, anti-PD1, rituxan	NCT03121677
			pediatric glioma	n/a	unk	glioma antigen peptide vaccine	NCT01130077
			glioma	1/11	unk	peptide vaccine, anti-PD1	NCT02960230
			glioblastoma	I/II	s.c.	peptide vaccine, anti-PD1	NCT03665545
			glioblastoma	1	s.c.	peptide vaccine, anti-CD27	NCT02924038
			glioblastoma	Ш	i.m.	glioma antigen peptide vaccine	NCT02358187
			glioblastoma	1	s.c.	glioma lysate vaccine	NCT02549833
			glioblastoma	1	unk	personal peptide vaccine	NCT03223103
			glioblastoma	1	i.m.	DC tumor cell lysate vaccine, anti-PD1	NCT04201873
			brain tumors	Ш	i.m.	DC vaccine	NCT01204684
			TNBC	1	s.c.	personal peptide vaccine	NCT02427581
			melanoma	I/II	s.c.	peptide vaccine, anti-CD27	NCT03617328
			kidney cancer	1	unk	personal peptide vaccine, anti-CTLA4	NCT02950766
			urothelial cancer	I	unk	personal peptide vaccine, anti-PDL1	NCT03359239
			lung cancer	I	s.c.	personal peptide vaccine, anti-PD1, chemotherapy	NCT0338087
			melanoma	I	s.c.	personal peptide vaccine, CPI, anti-CD40	NCT03597282
			pancreatic cancer	1	s.c.	personal peptide vaccine	NCT03956056
R3	Ampligen	Hemispherex	ovarian cancer	1/11	i.p.	anti-PD1, cisplatin	NCT03734692
	(rintatolimod)	Biopharma	prostate cancer	Ш	i.v.	IFN alpha 2B, aspirin	NCT03899987
			breast cancer	1	i.v.	IFNalpha-2B, celecoxib, chemotherapy	NCT04081389
			ovarian cancer	I/II	i.p.	DC vaccine, IFN alpha-2B, celecoxib	NCT02432378
			breast cancer	1	i.v.	anti-PD1, IFN alpha-2B, celecoxib	NCT03599453
			ovarian cancer	1	i.v.	tumor lysate vaccine	NCT01312389
			colorectal cancer	II	i.v.	anti-PD1, IFN alpha-2B, celecoxib	NCT03403634

Nucleic Acid Sensors as Therapeutic Targets

Toract	Drug Name	Davolopor	Diagono	Dhee	oPOA	Combination Agent	Trial ID
_	Drug Name	Developer	Disease		eROA	Combination Agent	Trial ID
TLR3/ MDA5	BO-112	Bioncotech Therapeutics	solid tumors	1	IT	anti-PD1	NCT02828098
LR7	imiquimod	3M Pharmaceuticals	lentigo maligna	Ш	topical	n/a	NCT02394132
	(Aldara)		squamous cell carcinoma	Ш	topical	5-fluorouracil	NCT03370406
			VIN (pre-cancer)	Ш	topical	n/a	NCT01861535
			anal cancer	Ш	topical	5-fluorouracil	NCT02135419
			anal cancer	Ш	topical		NCT02059499
			cervical cancer	П	topical		NCT0323341
			melanoma	1	topical		NCT0327683
			CIN (pre-cancer)	1		fluorouracil	NCT0319618
			CIN (pre-cancer)	1	topical		NCT0078816
			vulvar cancer	Ш	topical		NCT0318068
			basal cell carcinoma			sonidegib	NCT03534947
			ependymoma	n/a	unk	synthetic tumor antigen	NCT0179531
			CIN (pre-cancer)	II		HPV vaccine	NCT0286414
			melanoma	ï		anti-PD1	NCT0327683
			solid tumors	1	unk	anti-PD1, FUSA treatment	NCT0411632
			CTCL	i		doxycycline	NCT0311665
			leukemia (ALL)	1/11	topical	GM-CSF, personal peptide	NCT0355941
			, ,			vaccine	
			leukemia (CLL)	II	topical	vaccine	NCT0280294
			solid tumors		topical	tumor-targeting antibody	NCT0387294
LR7	resiquimod	Galderma	melanoma	II	topical	peptide vaccine	NCT00960752
		Pharma	melanoma	I/II	topical	peptide vaccine	NCT02126579
			brain tumors	II	i.m.	DC vaccine	NCT0120468
TLR 7/8	NKTR-262	Nektar	solid tumors	I/II	IT	PEGylated IL-2, anti-PD1	NCT0343564
LR 7/8	BDC-1001	Bolt Biotherapeutics	HER2-positive tumors	I	i.v.	anti-HER2 antibody ^b , anti-PD1	NCT0427814
LR7	LHC165	Novartis	solid tumors	I .	IT	anti-PD1	NCT0330189
LR8	VTX-2337	Celgene	HNSCC	L	IT or s.c	anti-PD1	NCT0390652
			ovarian cancer	I/II	s.c.	durvalumab, Doxil	NCT0243155
TLR7/ B, RIG-I	CV8102	CureVac	solid tumors	I	IT	anti-PD1	NCT0329100
LR9	SD-101	Dynavax Technologies	melanoma, HNSCC	I/II	IT	anti-PD1	NCT02521870
			lymphoma	1/11	IT	BTK inhibitor and RT	NCT02927964
			prostate	II.	IT	anti-PD1, SBRT	NCT0300773
			solid tumors	1/11	IT	IDO inhibitor and RT	NCT03322384
			lymphoma	1	IT	anti-OX40 and RT	NCT0341090
			solid tumors	ì	IT	anti-OX40	NCT0383129
			pancreatic cancer	ì	IT	anti-PD1 and RT	NCT0405008
LR9	IMO-2125	Idera Pharmaceuticals	melanoma	II	IT	anti-CTLA4, anti-PD1	NCT0264496
	(tilsotolimod)	-	melanoma	Ш	IT	anti-CTLA4	NCT03445533
			solid tumors	11	IT	anti-CTLA4, anti-PD1	NCT03865082
			melanoma	" 	i.d.	none	NCT03003002
			HNSCC	ï	IT.	anti-OX40, anti-PD1,	NCT0412687

Target Drug Name	Developer	Disease	Pha	seROA	Combination Agent	Trial ID
TLR9 MGN1703	Mologen AG	solid tumors	T	IT, s.c.	anti-CTLA4	NCT02668770
		colorectal cancer	Ш	s.c.	none	NCT02077868
TLR9 CMP-001	Checkmate	melanoma	1	IT	anti-PD1	NCT02680184
	Pharmaceuticals	melanoma	Ш	IT	anti-PD1	NCT03618641
		melanoma	1	s.c., IT	anti-PD1	NCT03084640
		lung cancer	1	s.c., IT	anti-PDL1, RT	NCT03438318
		colorectal cancer	1	s.c., IT	anti-PD1, anti-CTLA4, RT	NCT03507699
		HNSCC	II	IT	anti-PDL1, anti-41BB, anti-OX40	NCT02554812
RIG-I MK-4621	Merck	solid tumors	1	IT	anti-PD1	NCT03739138
STING ADU-S100	Aduro Biotech,	solid tumors	-1	IT	none	NCT02675439
(MIW815)	Novartis	solid tumors	1	IT	anti-PD1	NCT03172936
		HNSCC	II	IT	anti-PD1	NCT03937141
STING MK-1454	Merck	solid tumors	-1	IT	anti-PD1	NCT03010176
		HNSCC	II	IT	anti-PD1	NCT04220866
STING MK-2118	Merck	solid tumors	1	IT or s.c	c.anti-PD1	NCT03249792
STING GSK3745417	GlaxoSmithKline	solid tumors	1	i.v.	anti-PD1	NCT03843359
STING BMS-986301	Bristol-Myers Squibb	solid tumors	1	IT or i.n	n.anti-PD1 and anti-CTLA4	NCT03956680
STING IMSA101	ImmuneSensor Therapeutics	solid tumors	I	IT	CPI	NCT04020185
STING SB 11285	Spring Bank Pharmaceuticals	solid tumors	1	i.v.	anti-PD1	NCT04096638
STING SYNB1891	Synlogic	solid tumors		IT	anti-PDL1	NCT0416713

Source: ClinicalTrials.gov.


ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CIN, cervical intraepithelial neoplasia; CLL, chronic lymphatic leukemia; CTCL, cutaneous T cell lymphoma; FUSA, focused ultrasound ablation; HNSCC, head and neck squamous cell carcinoma; i.d., intradermal; i.m., intramuscular; i.p., intraperitoneal; IT, intratumoral; i.v., intravenous; MDS, myelodysplastic syndrome; n/a, not applicable; ROA, route of administration; RT, radiation therapy; SBRT, stereotactic body radiation therapy; s.c., subcutaneous; sonidegib, Hedgehog signaling pathway inhibitor; TNBC, triplenegative breast cancer; unk, unknown; VIN, vulvar intraepithelial neoplasia.

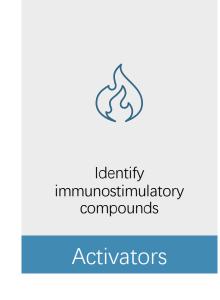
^aDEC-205/NY-ESO-1 fusion protein.

^banti-HER2 monoclonal antibody conjugated to TLR 7/8 dual agonist.

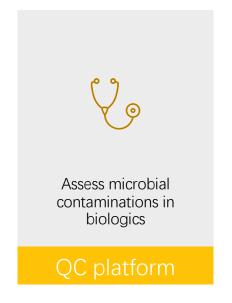
To Identify Novel Immunomodulator Drugs

Tools to save time and resources in stage 1, so you can focus on later stages

Compound Discovery


Cell based assay Target Compound screening *In vivo* analysis secondary assays validation Candidate % inhibition Enzyme/Receptor •Genetic, cellular •HTS & selective •in vitro & ex vivo Compound Preclinical and in vivo library screens; secondary assays pharmacology safety & toxicity experimental structure based design (mechanistic) Disease efficacy package models to identify Reiterative directed Selectivity & liability models Early safety & and validate target compound synthesis to assays improve compound toxicity studies properties

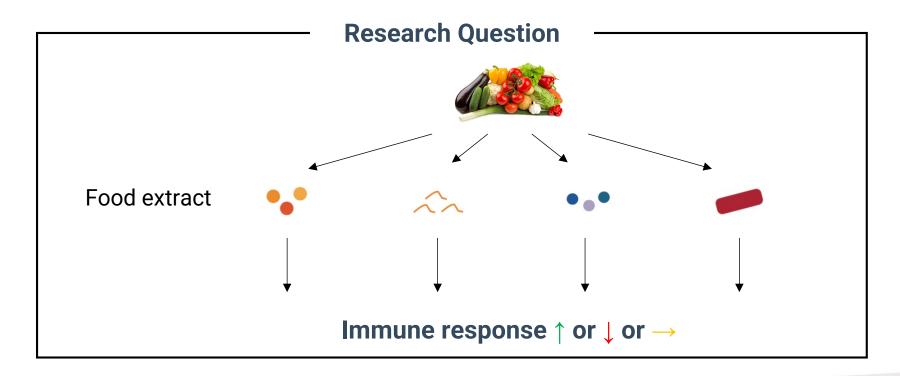
Br J Pharmacol. 2011 Mar;162(6):1239-49.doi: 10.1111/j.1476-5381.2010.01127.x.


Compound Discovery

Allows for identification of better molecules

Case I: Screening for Immunoactive Compounds

Activators

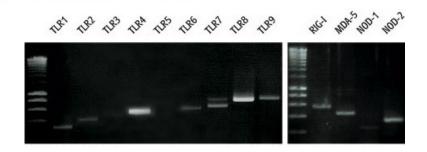

pISSN 2508-1357, eISSN 2508-139X J Biomed Transl Res 2018;19(4):092-102 https://doi.org/10.12729/jbtr.2018.19.4.092 Received 23 Sep. 2018, Revised 19 Dec. 2018, Accepted 19 Dec. 2018

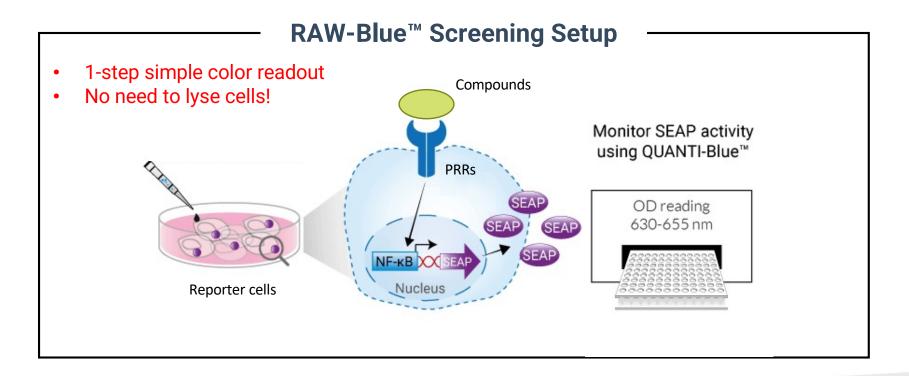
Original Article

Screening of immunoactive ingredients in frequently consumed food in Korea

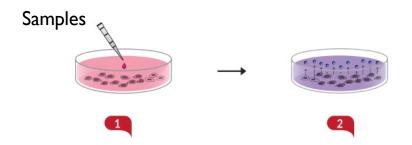
Na-Young Gil¹, Sang-Myeong Lee², Ji-Young Mun¹, Soo-Hwan Yeo¹, So-Young Kim^{1*}

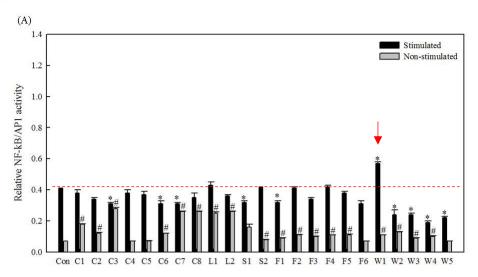
¹Fermented and Processed Food Science Division, National Institute of Agricultural Sciences, RDA, Wanju 55365, Korea, ²Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 54596, Korea.

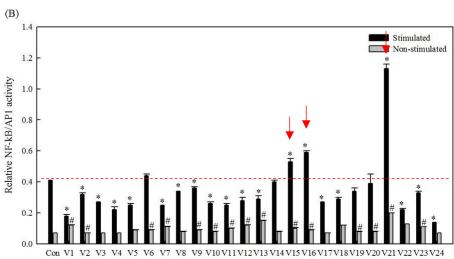



Case I: Screening for Immunoactive Compounds

RAW cells endogenous expression of PRRs


Case I: Screening for Immunoactive Compounds

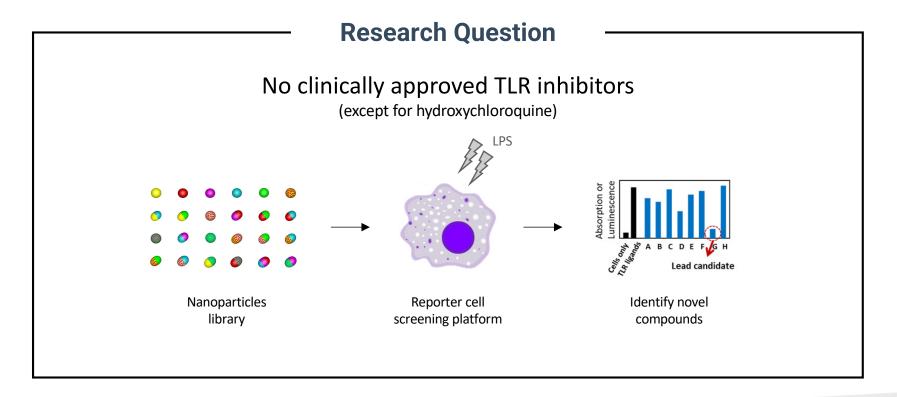

Activators


Group		Foo	d and Description	Origin
	F1	밀감	Mandarin orange	Jeju
	F2	바나나	Banana	Philippines
n :	F3	нH	Pear	Jochiwon
Fruits	F4	사과	Apple	Cheongsong
	F5	수박	Water melon	Korean
	F6	포도	Grape	Sangju
	W1	가죽나무	Ailantias altissima	Korean
	W2	꿀풀	Prunella vulgaris L.	Korean
Wild plant	W3	다래	Actinidia arguta	Korean
	W4	머위	Petasites japonicus	Korean
	W5	참취	Aster scaber	Korean
	V1	고사리	Bracken	Yeoju
	V2	깻잎	Perilla leaves	Daegu
	V3	꽈리고추	Green young hot pepper	Jinju
	V4	당근	Carrot	Jeju
	V5	대과	Welsh onion	Yeoju
	V6	마늘	Garlic	Seosan
	V7	무	Korean radish	Jeju
	V8	미나리	Water dropwort	Gijang

Examples of food samples for screening

Quantify NFkB activity by OD630

Lead compounds identified (e.g. W1, V15/16/21)

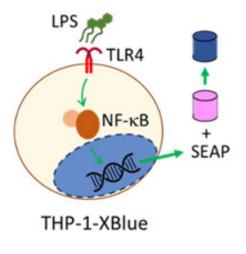

www.jove.com

Video Article

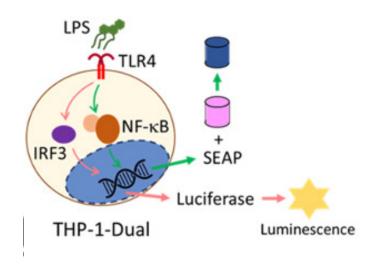
Screening Bioactive Nanoparticles in Phagocytic Immune Cells for Inhibitors of Toll-like Receptor Signaling

Hong Yang¹, Shan Yu Fung², Aihua Bao¹, Qiang Li¹, Stuart E. Turvey²

²Department of Pediatrics, BC Children's Hospital and University of British Columbia

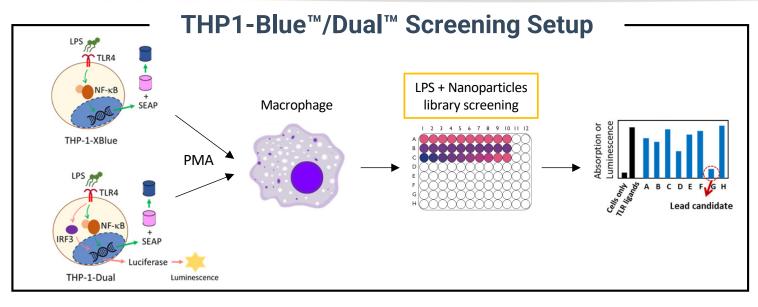


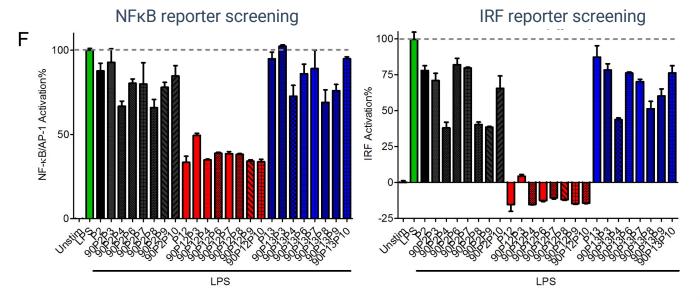
¹Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine


THP1-Blue™ NF-κB Cells	Unit size	Cat. code
NF-ĸB SEAP Reporter Monocytes	■ 3-7 x 10e6 cells	thp-nfkb

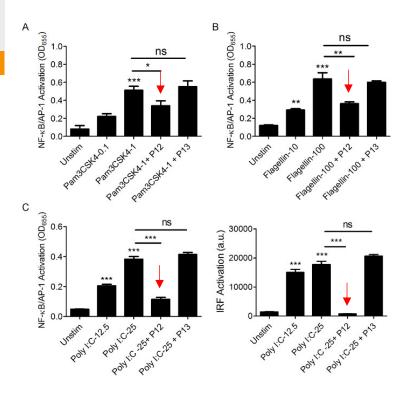
NFkB reporter cells derived from THP-1

THP1-Dual™ Cells	Unit size	Cat. code
NF-κB-SEAP IRF-Luc Reporter Monocytes	3-7 x 10e6 cells	thpd-nfis

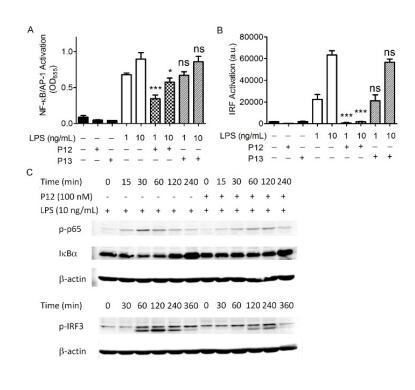



SEAP: NFkB reporter

Lucia luciferase: IRF reporter

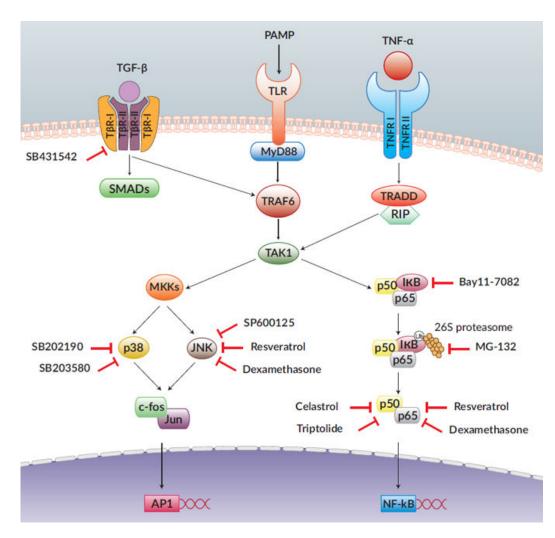


Lead compounds identified (e.g. 90P12P group)



Inhibitors

P12 inhibits TLR2, TLR3, TLR5 activity



P12 delays p65 and IRF phosphorylation

Lead compounds function verified by further experiments

Reporter Cell Lines

Multiple activators/inhibitors targeting the same pathway

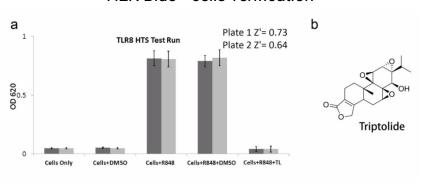
Target Identification:

- 1. Pick a target of interest, then ask yes/no
- 2. Screening to identify specific target for novel drugs

Case III: HTS for Specific TLR Inhibitors

Small-molecule inhibition of TLR8 through stabilization of its resting state

Shuting Zhang^{1-3,7}, Zhenyi Hu^{2,7}, Hiromi Tanji^{4,7}, Shuangshuang Jiang¹, Nabanita Das², Jing Li⁵, Kentaro Sakaniwa⁴, Jin Jin⁶, Yanyan Bian⁶, Umeharu Ohto⁴, Toshiyuki Shimizu^{4*} & Hang Yin^{1,2} • *


Verifying HEK-Blue™ assay is robust for HTS

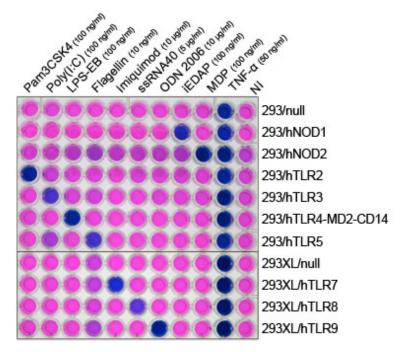
384-well HTS

Supplementary Table 1: Small molecule screening data

Category	Parameter	Description
Assay	Type of assay	Cell-based
	Target	Toll-like Receptor 8 signaling pathway
	Primary measurement	Detection of TLR8-inducted secreted
		embryonic alkaline phosphatase (SEAP)
		concentration in the culture media
	Key reagents	R848, QUANTI-Blue TM , Triptolide
		(Invitrogen)
	Assay protocol	http://www.invivogen.com/quanti-blue
Library	Library size	14,400
	Library composition	Drug-like molecules
	Source	Maybridge
Screen	Format	384-well plate
	Concentration(s) tested	4 μM, 0.04% DMSO

HEK-Blue™ cells verification

Supplementary Figure 2: Z'-factor for HTS assay. (a) An average Z'-factor of 0.68 was determined with two independent experiment to demonstrate that the HTS assay is robust. A previously established NF- κ B inhibitor, triptolide (TL), was employed as the positive control. Data are mean \pm *SD*; n =60, technical replicates). (b) Chemical structure of triptolide.


Case III: HTS for Specific TLR Inhibitors

♣ HEK-Blue™ hTLR8

HEK-Blue™ hTLR8 cells	Unit size	Cat. code
Human TLR8-expressing HEK 293 cells	3-7 x 10e6 cells	hkb-htlr8

TLR8-NFkB reporter cells derived from HEK293

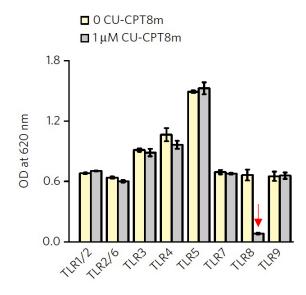
HEK293 expresses limited TLRs, so the response is highly specific to overexpressed receptors

Supplementary Table 2: Representative structure-activity relationship (SAR) results for inhibitory activities of pyrazolo[1,5-a]pyrimidine derivatives in HEK-Blue hTLR8 cells.

No.	\mathbb{R}^1	\mathbb{R}^2	IC50 [nM]
5 (CU-CPT8m)	3-Me-C ₆ H ₄ -	-NH ₂	67 ± 10
6	3-CF ₃ -C ₆ H ₄ -	-OH	> 20,000
9	3-CF ₃ -C ₆ H ₄ -	-OEt	210 ± 43
10	3-Me-C ₆ H ₄ -	-OEt	92 ± 15
11	3-Me-C ₆ H ₄ -	-ОН	> 20,000
12	3-CF ₃ -C ₆ H ₄ -	-NH ₂	130 ± 30
13	2-CF ₃ -C ₆ H ₄ -	-NH ₂	230 ± 140
14	4-CF ₃ -C ₆ H ₄ -	-NH ₂	$1,\!220\pm200$
15	Phenyl-	-NH ₂	760 ± 230
16	3-NO ₂ -C ₆ H ₄ -	-NH ₂	220 ± 70
17	3-F-C ₆ H ₄ -	-NH ₂	450 ± 90
18	3-Cl-C ₆ H ₄ -	-NH ₂	280 ± 100
19	3,5-diCF ₃ -C ₆ H ₃ -	-NH ₂	250 ± 130
20	2-OMe-C ₆ H ₄ -	-NH ₂	$2,\!310\pm220$
21	3-OMe-C ₆ H ₄ -	-NH ₂	$1,\!200\pm200$
22	3-Pyridyl	-NH ₂	>20,000
23	3-Et-C ₆ H ₄ -	-NH ₂	120 ± 23
24	3-CF ₃ -C ₆ H ₄ -	-NHMe	$1,700\pm300$
25	3-CF ₃ -C ₆ H ₄ -	-NEt ₂	>20,000

^{*}IC₅₀ values and corresponding standard deviations were determined from at least three biological replicates.

HTS Screening results


Case III: HTS for Specific TLR Inhibitors

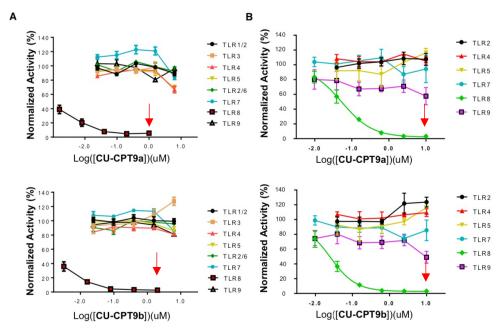
Small-molecule inhibition of TLR8 through stabilization of its resting state

Shuting Zhang^{1-3,7}, Zhenyi Hu^{2,7}, Hiromi Tanji^{4,7}, Shuangshuang Jiang¹, Nabanita Das², Jing Li⁵, Kentaro Sakaniwa⁴, Jin Jin⁶, Yanyan Bian⁶, Umeharu Ohto⁴, Toshiyuki Shimizu⁴* & Hang Yin^{1,2} • 1

Verifying TLR8 specificity for lead compound

Cell Chemical Biology

Brief Communication


Small-Molecule TLR8 Antagonists via Structure-Based Rational Design

Zhenyi Hu,¹¹² Hiromi Tanji,³ Shuangshuang Jiang,² Shuting Zhang,² Kyoin Koo,¹ Jean Chan,⁴ Kentaro Sakaniwa,³ Umeharu Ohto,³ Albert Candia,⁴ Toshiyuki Shimizu,³ and Hang Yin¹.².5.*

Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Bei

³Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan

⁴Dynavax Technologies Corporation, Berkeley, CA 94710, USA

Verifying TLR8 specificity for lead compound (serial dilution)

TLR reporter cells panel for specificity test



Screening Specific PRR Ligands

PRR Ligands Screening Platform Scheme

**PRR target identification for novel compounds

Case IV: Reporter Cell Lines for QC

QC platforr

PRODUCT	QUANTITY	CAT. CODE
HUMAN	,	
HEK-Blue™ hTLR2 Cells	$3-7 \times 10^6$ cells	hkb-htlr2
HEK-Blue [™] hTLR3 Cells	$3-7 \times 10^{6}$ cells	hkb-htlr3
HEK-Blue [™] hTLR4 Cells	$3-7 \times 10^{6}$ cells	hkb-htlr4
HEK-Blue™ hTLR5 Cells	3-7 x 10 ⁶ cells	hkb-htlr5
HEK-Blue [™] hTLR7 Cells	$3-7 \times 10^{6}$ cells	hkb-htlr7
HEK-Blue [™] hTLR8 Cells	$3-7 \times 10^6$ cells	hkb-htlr8
HEK-Blue™ hTLR9 Cells	$3-7 \times 10^6$ cells	hkb-htlr9
MOUSE		
HEK-Blue™ mTLR2 Cells	$3-7 \times 10^{6}$ cells	hkb-mtlr2
HEK-Blue™ mTLR3 Cells	$3-7 \times 10^6$ cells	hkb-mtlr3
HEK-Blue™ mTLR4 Cells	3-7 x 10 ⁶ cells	hkb-mtlr4
HEK-Blue [™] mTLR5 Cells	$3-7 \times 10^6$ cells	hkb-mtlr5
HEK-Blue™ mTLR7 Cells	$3-7 \times 10^{6}$ cells	hkb-mtlr7
HEK-Blue™ mTLR8 Cells	$3-7 \times 10^{6}$ cells	hkb-mtlr8
HEK-Blue [™] mTLR9 Cells	$3-7 \times 10^6$ cells	hkb-mtlr9
HEK-Blue™ mTLR13 Cells	$3-7 \times 10^{6}$ cells	hkb-mtlr13
CONTROL		
HEK-Blue [™] Null1 Cells	$3-7 \times 10^6$ cells	hkb-null1
HEK-Blue [™] Null1-k Cells	$3-7 \times 10^6$ cells	hkb-null1k
HEK-Blue™ Null1-v Cells	$3-7 \times 10^6$ cells	hkb-null1v
HEK-Blue [™] Null2 Cells	$3-7 \times 10^6$ cells	hkb-null2
HEK-Blue [™] Null2-k Cells	3-7 x 10 ⁶ cells	hkb-null2k

JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2009, p. 3427–3434 0095-1137/09/812.00 doi:10.1128/JCM.00373-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Vol. 47, No. 11

Use of Toll-Like Receptor Assays To Detect and Identify Microbial Contaminants in Biological Products[∇]

Li-Yun Huang, ¹ James L. DuMontelle, ² Melissa Zolodz, ² Aparna Deora, ² Ned M. Mozier, ² and Basil Golding ^{1*}

Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, and Research and Development, Pfizer Global Biologics, Chesterfield, Missouri 63017²

US FDA and Pfizer propose HEK-Blue™ assays to detect microbial contaminants in biological products

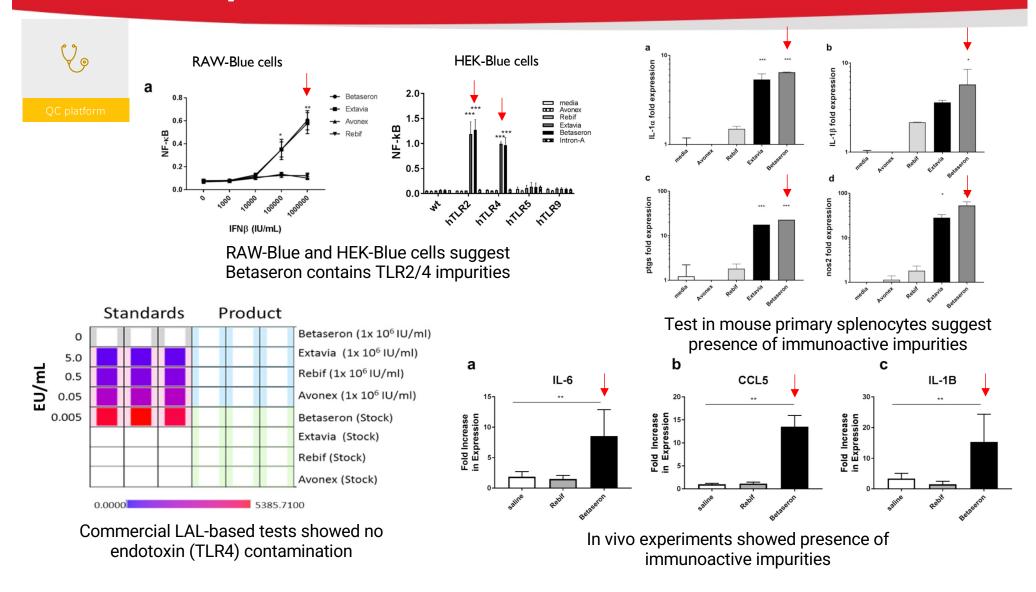
	0	TLR2	TLR3	TLR4	TLR5	TLR7	TLR8	TLR9
mycoplasma		+						
Gram +		+			+			+
Gram -		+		+	+			+
Fungi		+		+		+	+	+
Virus	+							+
Flagellin	+				+			
dsRNA	+		+					
ssRNA						+	+	
LPS				+				

Proposed Algorithm for microbial contaminant detection using InvivoGen cell lines

Case IV: Reporter Cell Lines for QC

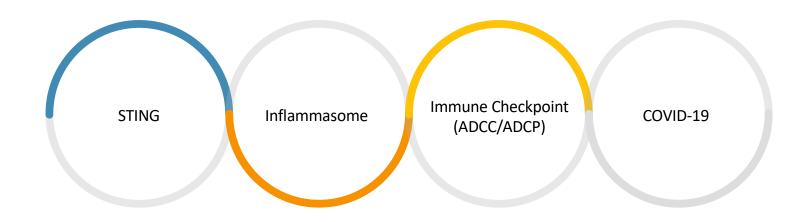
OPEN Cell based assay identifies TLR2 and TLR4 stimulating impurities in Interferon beta

Received: 15 March 2017 Accepted: 1 August 2017 Published online: 05 September 2017


Lydia Asrat Haile, Swamy Kumar Polumuri, Roshni Rao, Logan Kelley-Baker, Dimitri Kryndushkin, Rajesh Rajaiah, Tomer Israely, V. Ashutosh Rao & Daniela Verthelyi

Using reporter cells for OC

Compreporter cens for QC					
Parameters	Rebif (IFNβ-1a)	Avoxnex (IFNβ-1a)	Avonex (IFNβ-1a)	Betaseron (IFNβ-1b)	Extavia (IFNβ-1b)
Produced in	СНО	СНО	СНО	E.Coli	E.Coli
Manufactured by	Serono Inc.	Biogen	Biogen	Bayer	Novartis
Commercial biological products			er Cells	Measureme immunoactive in	


Case IV: Reporter Cell Lines for QC

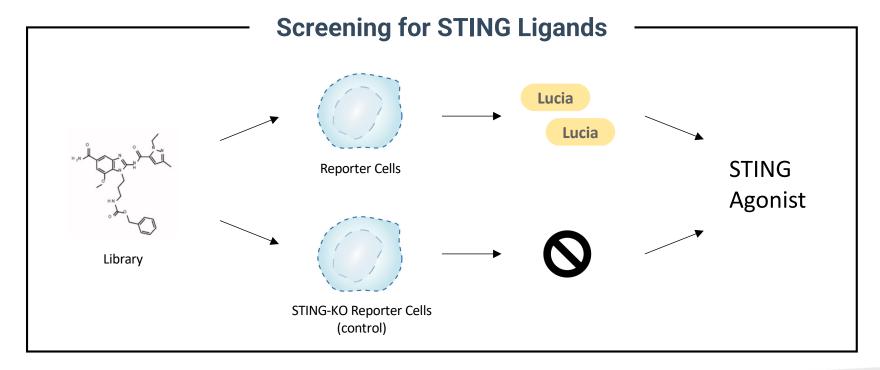
FDA comments: ... the method exclusively detected low levels of IIRMIs ... that were not evident using the LAL test

Other Research Hot Topics

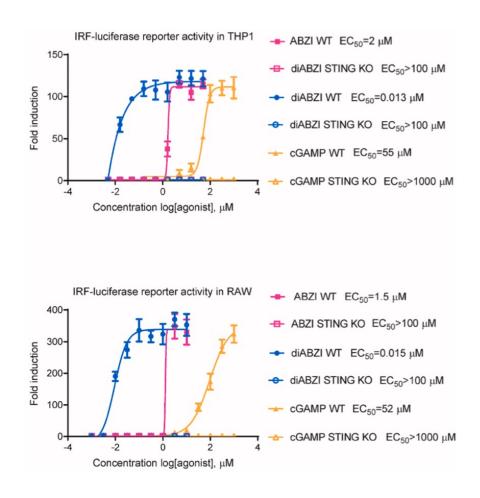
Case V: STING Ligands Screening

Contents lists available at ScienceDirect

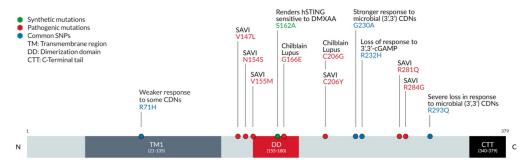
Antiviral Research


Research paper

A synthetic STING agonist inhibits the replication of human parainfluenza virus 3 and rhinovirus 16 through distinct mechanisms


Qingyuan Zhu*, Hui Hu, Haixia Liu, Hong Shen, Zhipeng Yan**, Lu Gao***

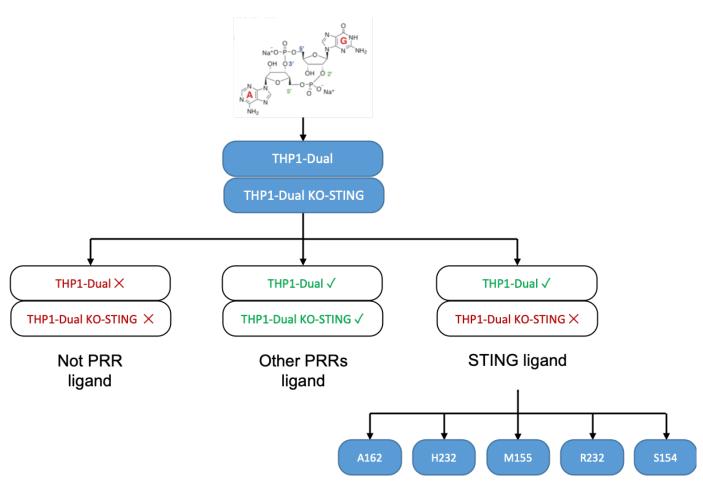
Roche Innovation Center Shanghai, Shanghai, 201203, China



Case V: STING Ligands Screening

Reporter cells identify ABZI and diABZI as potent and specific STING agonists

STING exists as multiple variants


CELLLINE	PRODUCTS	CELL LINE	PRODUCTS
B16	B16-Blue™ ISG Cells	RAW 264.7	RAW-Lucia™ ISG Cells
	B16-Blue™ ISG-KO-STING Cells		RAW-Lucia™ ISG-KO-cGAS Cells
HEK293	HEK-Blue™ ISG Cells		RAW-Lucia™ ISG-KO-IRF3 Cells
	HEK-Blue™ ISG-KO-STING Cells		RAW-Lucia™ ISG-KO-STING Cells
HEK293T	293T-Dual™ hSTING-A162 Cells	THP-1	THP1-Dual™ Cells
	293T-Dual™ hSTING-H232 Cells		THP1-Dual™ KO-cGAS Cells
	293T-Dual™ hSTING-R232 Cells		THP1-Dual™ KO-STING Cells
	293T-Dual™ mSTING Cells		THP1-Dual™ KI-hSTING-A162 Cells
			THP1-Dual™ KI-hSTING-H232 Cells
			THP1-Dual™ KI-hSTING-M155 Cells
			THP1-Dual™ KI-hSTING-R232 Cells
			THP1-Dual™ KI-hSTING-S154 Cells

Panels of reporter cells with different STING variants

Case V: STING Ligands Screening

STING Ligands Screening Platform Scheme

Verify agonists effect on STING variants

Case VI: Inflammasome Ligands Screening

Article

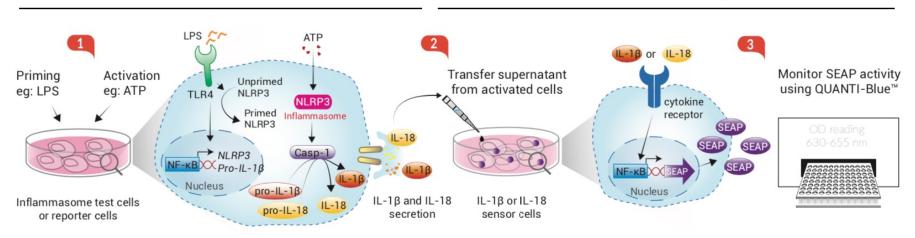
A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion

Min Zhang,^{1,3} Lei Liu,^{1,3} Xubo Lin,² Yang Wang,¹ Ying Li,¹ Qing Guo,¹ Shulin Li,¹ Yuxin Sun,¹ Xuan Tao,¹ Di Zhang,¹ Xiachen Lv,¹ Li Zheng,¹ and Liang Ge^{1,4,*}

1State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences,

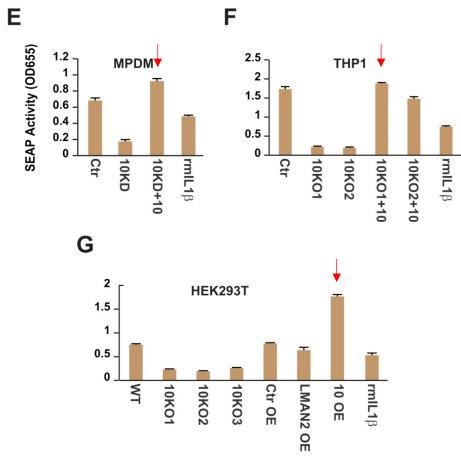
Tsinghua University, Beijing 100084, China

²Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China


³These authors contributed equally

⁴Lead Contact

Testing the effect of protein candidate on IL-1β secretion


2. Quantify IL-1β using reporter cells

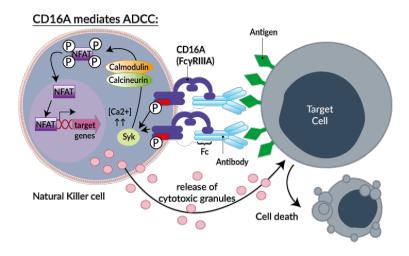
Principle of IL-1 β or IL-1 β detection and quantification in the supernatant of inflammasome-activated cells using the HEK-BlueTM IL-1 β , HEK-BlueTM IL-1 β , and HEK-BlueTM IL-1 β cells.



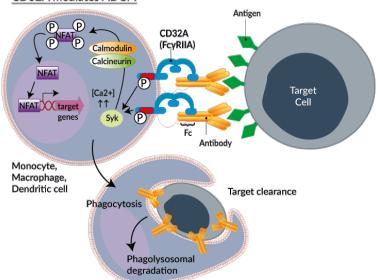
Case VI: Inflammasome Ligands Screening

Demonstrating candidate protein TMED10's effect to activate inflammasome

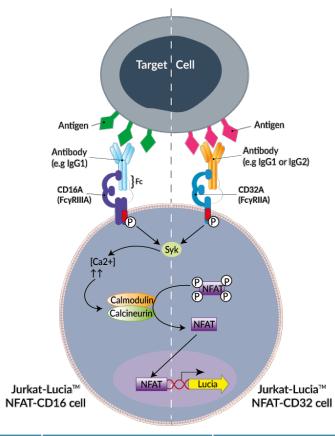
Proposed Inflammasome Screening Platform


Identify inflammasome target

Proposed Algorithm for inflammasome compound screening using InvivoGen cell lines

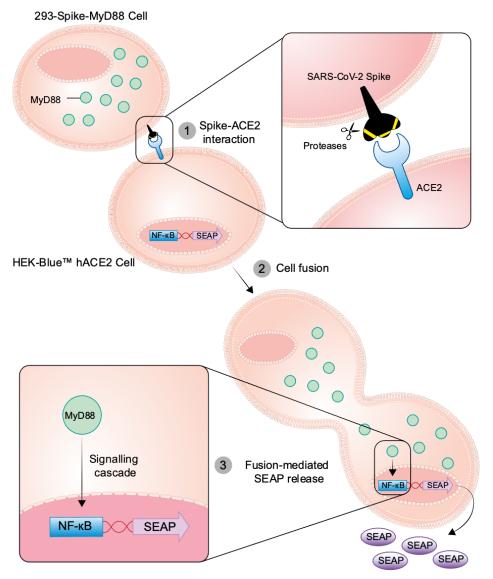


Case VII: ADCC, ADCP


CD16A and CD32A mediated ADCC and ADCP

CD32A mediates ADCP:

ADCC and ADCP cell reporter assays



	Traditional	InvivoGen
Cell Line	NK cells / Macrophages	Jurkat cell line
Readout	Target cell death / Phagocytosis	Luciferase reporter

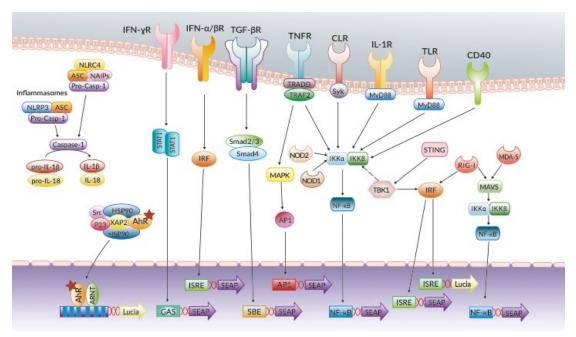
Case VIII: COVID-19

(Or without Spike for you to express Spike variants)

SARS-CoV2 binding analysis

1. Binding: SEAP

2. No binding: no SEAP


Screen for inhibitors and neutralizing antibodies

Test the effect of different Spike variants

Products	
• Wuhan-Hu-1Spike NEW	Wuhan-Hu-1 Spike Expression vectors
○ Wuhan-Hu-1 (D614G) NEW	Wuhan-Hu-1 Spike (D614G) Expression vectors
O United Kingdom Variant (B.1.1.7) NEW	United Kingdom (B.1.1.7) Spike Expression vectors
South African Variant (B.1.351) NEW	South African (B.1.351) Spike Expression vectors
Californian (US) Variant (B.1.429) NEW	Californian (B.1.429) Spike Expression vectors

InvivoGen Reporter Cells Collections

Cell Line Family	Examples
PRR reporter cells	TLR reporter STING-KO
Inflammasome test cells	IL-1b reporter NLPR3-KO
Transcription reporter cells	TBK1-KO IRF3-KO
Cytokine reporter cells	IFNα/β IL-6 IL-17 TNFα
ADCC / ADCP	NFAT-CD16 / CD32
COVID-19	ACE2

InvivoGen Reporter Cells and Screening Service

"Do it yourself" vs "Let InvivoGen help you"

CELL CULTURE

See-through innate immunity signaling pathways

- PRR, transcription factor, inflammasome, cytokine, & autophagy reporter cells
- --- Thoroughly tested for viability and biological activity
- --- Compatible with high-throughput screening

InvivoGen offers a large panel of human and mouse cell lines that are stably transfected with innate immunity-specific pathway reporter constructs. Our cells express one or two reporter proteins, the secreted embryonic alkaline phosphatase (SEAP) and/or the Lucia luciferase. Both proteins offer the great advantage of being secreted, allowing for multiple and non-destructive readings over time. InvivoGen has developed easy-to-use detection reagents: QUANTI-Blue™ for SEAP monitoring using a spectrophotometer, and QUANTI-Luc™ for Lucia luciferase monitoring with a luminometer.

A product range for flexible assays

SEAP, Lucia or Dual™ reporter cells

PRRs, Inflammasomes, Transcription factors, Cytokines and Autophagy

PRR and IFN signaling knockout

Optimized detection reagents

elective antibiotics

Anti-contamination reagents

WWW.INVIVOGEN.COM/REPORTER-CELLS

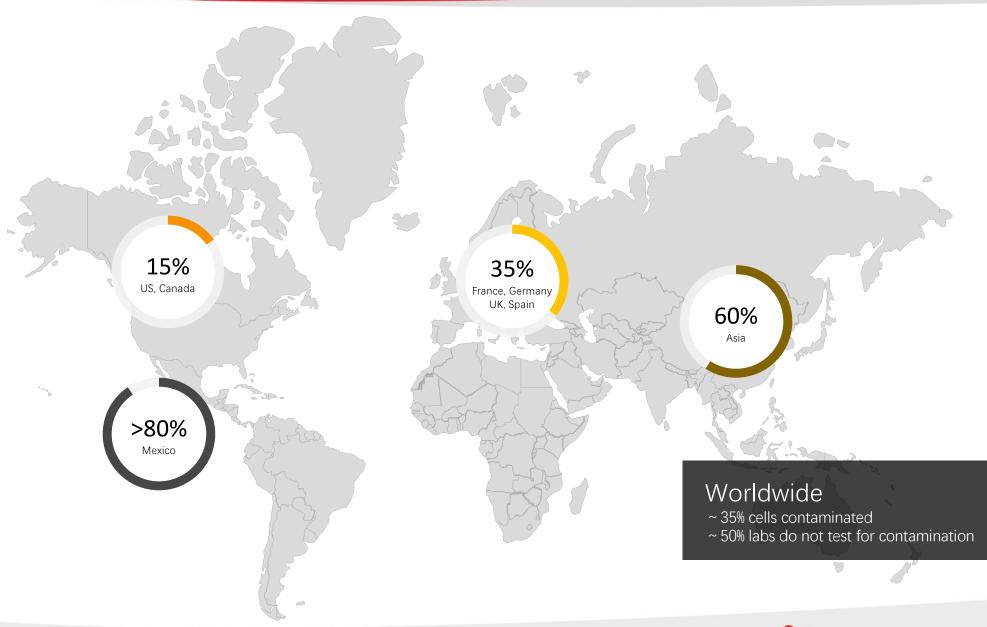
SCREENING

Finding the needle just got easier

- Our expertise will bring you the data you need
- Cost effective
- Screening flexibility, Reliable & Recognized

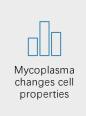
There is a growing interest in the targeting of Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) for drug discovery research. As a recognized industry leader in innate immunity, InvivoGen provides a high quality immunomodulatory compound screening service to assist our clients' drug discovery and development needs.

Screening Service for Ligands of PRRs:


TLRs (2,3,4,5,7,9). NOD1, NOD2, RIG-I, MDA-5,

STING Dectin-1 & Mincle

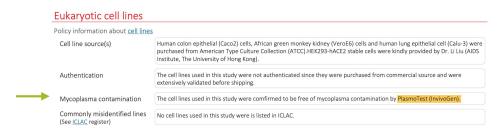
Mycoplasma Contamination


Mycoplasma Detection

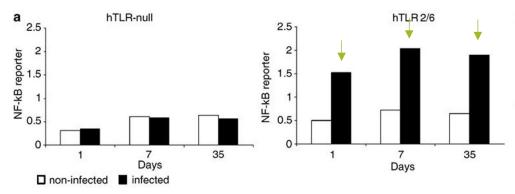
Metallodrug ranitidine bismuth citrate suppresses SARS-CoV-2 replication and relieves virus-associated pneumonia in Syrian hamsters

Shuofeng Yuan^{1,6}, Runming Wang [©]^{2,6}, Jasper Fuk-Woo Chan^{1,3,6}, Anna Jinxia Zhang¹,
Tianfan Cheng [©]⁴, Kenn Ka-Heng Chik¹, Zi-Wei Ye¹, Suyu Wang², Andrew Chak-Yiu Lee¹, Lijian Jin [©]⁴,
Hongyan Li², Dong-Yan Jin [©]⁵. Kwok-Yung Yuen [©]^{1,3 ™} and Hongzhe Sun [©]^{2 ™}

Protect data


ORIGINAL ARTICLE

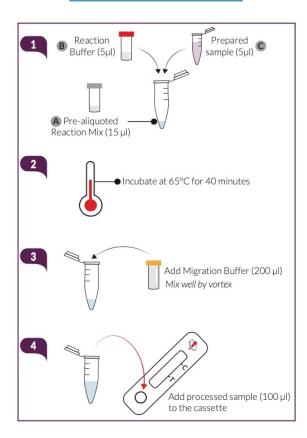
Oncogene (2008) 27, 4521–4531
© 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 \$30.00
www.nature.com/onc


Mycoplasma infection suppresses p53, activates NF- κB and cooperates with oncogenic Ras in rodent fibroblast transformation

DY Logunov¹, DV Scheblyakov¹, OV Zubkova¹, MM Shmarov¹, IV Rakovskaya¹, KV Gurova², ND Tararova², LG Burdelya^{2,3}, BS Naroditsky¹, AL Ginzburg¹ and AV Gudkov^{2,3}

¹Gamaleya Research Institute for Epidemiology and Microbiology, Moscow, Russia; ²Cleveland BioLabs Inc., Buffalo, NY, USA and ³Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA

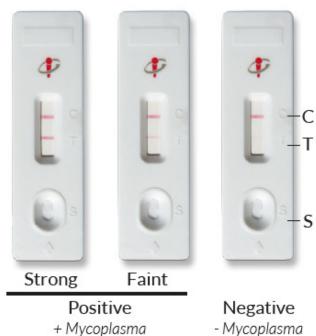
Declaration form to be submitted for publication


Mycoplasma activates NFkB (Luciferase experiment)

Mycoplasma detection is needed / advantage for publication

MycoStrip™

Protocol overview


MycoStrip™ Advantages:

- Simple (no special equipment needed)
- Rapid (1hr, 15min hands-on time)
- Sensitive (10-100 CFU/ml)

Detection mechanism

Isothermal PCR of the 16S rRNA gene

Read out

- Mycoplasma

Thank you!

tech.hk@invivogen.com

